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The shape oscillations of drops in another fluid with or without surfactants has been 
analysed by normal mode expansions. The effects of surfactants are accommodated 
by considering the Gibbs elasticity, associated with the redistribution of surfactants, 
and a Boussinesq surface fluid with two surface viscosities. A general transcendental 
equation for the complex frequency of the free oscillations is derived. Explicit 
dispersion relations are given for fluids of small bulk viscosities and an interface of 
small, moderate, and large interfacial properties by a perturbation method. We have 
found that the oscillation always damps out faster for an interface exhibiting 
interfacial properties other than the interfacial tension, and the Gibbs elasticity is 
the most important parameter that alters the free-oscillation frequency and the 
damping constant. Moreover, the energy dissipation for an extensible interface can 
be much higher than that of an inextensible interface owing to the strong vorticity 
generated in the boundary layers. 

1. Introduction 
The dynamic response of a fluid drop has often been discussed in one form or 

another because of its significance in a great variety of applications, such as nuclear 
physics, meteorology, and chemical engineering. Rayleigh (1879, 1902) first studied 
the small-amplitude.oscillations of an inviscid fluid drop held together by interfacial 
tension and identified the free oscillation frequencies. He also established the amount 
of charge allowed for stable oscillations of a charged liquid drop (Rayleigh 1882), 
which was later used as a model for nuclear fission (Cohen & Swiatecki 1962 ; Nix 
1972). The rate of damping of the oscillations due to bulk viscosities of the fluids was 
investigated by Lamb (1932), Reid (1960), Miller t Scriven (1968) and Prosperetti 
(1977, 1980). Among them, Miller & Scriven (1968) analysed a more general case, in 
which not only the viscosities of the drop in an infinite outer fluid but also rheologic 
properties, besides the usual interfacial tension, manifest on the interface were 
considered. They, however, only gave expressions for the free-oscillation frequency 
and damping constant for the cases of a free and an inextensible interface. 

In this paper we present a theoretical analysis of a fluid drop oscillating in another 
fluid with and without surfactants, a problem encountered frequently in emulsions 
and foams. The aim is to establish the effects of surface properties of arbitrary 
magnitude and of the rate of diffusion of surfactants on the oscillations of drops, and 
to lay the basis for probing the interfacial properties by investigating the oscillations 
of drops with an acoustic levitation technique (Lu t Apfel1990). The study can also 
supplement Miller & Scriven’s for an interface with small or moderate interfacial 
properties, since our case reduces to theirs when the surfactants are insoluble in both 
fluids and only condense onto the interface. 
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Our analysis parallels that of Miller & Scriven except that the surface elasticity is 
associated with the redistribution of surfactants while the drop is oscillating. A 
normal mode expansion and a perturbation method are used to find the free- 
oscillation frequency and damping constant of the drop for the cases of zero, small, 
moderate and large interfacial properties. We show that the change of the frequency 
and damping constant is more marked for an extensible than an inextensible 
interface, and the amplitude of the oscillation damps out faster when the interface 
exhibits rheological properties, owing to the generation of strong vorticities in the 
boundary layers. (Such an observation follows directly from the work of Landau & 
Liftshitz (1959), who showed that the decay of oscillations in an oscillating boundary 
layer is proportional to ( u v ) ~ .  Miller & Scriven (1968) retrieved the same result for 
oscillating drops, thus confirming that the mechanism of viscous dissipation in a 
boundary layer is of fundamental importance in this problem.) 

2. Statement of the problem 
We consider the small-amplitude oscillations of a drop immersed in an unbounded 

fluid. The outer fluid may contain surfactants, but the concentration is sufficiently 
low that the bulk properties of the outer fluid are unchanged. Therefore, the 
governing equations of the bulk motion are the same as those for the pure fluids. The 
presence of the surfactants, however, alters the interfacial properties. For example, 
the interfacial tension may be reduced, and the interface may become viscoelastic. 
In our analysis, the surface fluid is assumed to be of the Boussinesq type (Boussinesq 
1913), so that the surface viscous force is a linear function of the surface strain with 
two proportional constants of surface shear and dilatational viscosities. Gibbs 
elasticity (surface dilatational elasticity) due to the sensitive dependence of the 
interfacial tension on the concentration of surfactants is also considered. Further- 
more the interfacial tension gradient - caused by local expansion and compression 
of the interface as the drop oscillates, finite diffusion rates of surfactants and 
manifestation of the Gibbs elasticity - is analysed. These effects of surfactants 
result in additional resistance to the interfacial deformation and eventually change 
the characteristics of the oscillations. 

3. Governing equations 
We consider an incompressible fluid drop of radius R surrounded by another 

infinite incompressible fluid with surfactants, whose equilibrium concentration C, 
determines the equilibrium interfacial tension yo.  The gravitational force is either 
balanced by other forces such as the acoustic radiation force, or negligible since the 
capillary constant (2yo/Apg)4 (Ap  is the difference in fluid densities and g the local 
acceleration due to gravity) is much larger than the radius of the drop. Therefore, in 
the absence of net body forces, the Navier-Stokes equation is 

av* -+ ( V * .  V*) u* = - v*p* + vv*2v*, 
at* 

where v* is the velocity field, p* the pressure field, and v the kinematic viscosity. 
Note that all quantities, where applicable, carry subscripts i and o for the droplet and 
continuous phase respectively. 

The viscosities of the fluids are assumed to be small, as in most practical cases. The 
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free-oscillation frequency of the drop is, thus, close to the Lamb frequency w* (Lamb 
1932), 

w * 2  = yo L(L-  1)  (L  + 1 )  (L  +2)  

P P O +  (L+ l)PilR3 ’ 

where the integer L denotes the mode of oscillation. The Reynolds number for the 
oscillation, x2 = R2w*/v,  is assumed to be sufficiently large that the penetration 
depth of the rotational flow is small compared with the radius of the drop. 
Additionally, only the nonlinear term in the Navier-Stokes equation can be 
neglected if the oscillation amplitude of the drop is much smaller than the radius 
(Landau & Lifshitz 1959). 

Under these conditions, scales based on the linear theory for inviscid drops can be 
used to  define the dimensionless velocity, v = v*/Rw*, pressure, p = p*/pR2w*l, time 
t = w*t * ,  and position, r = r* /R.  I n  terms of these variables, the condition of 
incompressibility and the linearized Navier-Stokes equation become 

v - v  = 0 ,  (2) 

(3) 
av 
at 

5 2  - = - x2vp + v2v.  and 

If the time-dependent part e-aat (a2 = w / w *  is the complex dimensionless frequency 
with the real and imaginary part being the damping constant and oscillation 
frequency respectively) in v and p is factored out, (2) and (3) can be solved readily 
by using normal mode expansions (Chandrasekhar 1961). In  spherical coordinates 
(with the origin located a t  the centre of the drop) the solutions are 

Here 

q ( r )  = b i r jL(ax i r ) ,  

T , ( r )  = b, r h f ) ( a x , r ) ,  

gi rL+l 
X,(r) = a, rj,(az, r )  + 

a2(L + 1 )  ’ 

90 F L  So(r)  = a , rhf ) (ax , r )  -- 
a2L . 

YLM(Q) are the spherical harmonics with B denoting coordinates 0, q5,jL(r) the 
spherical Bessel function of order L and h f ) ( r )  the spherical Hankel function of the 
first kind of order L. The subscripts, L,  M ,  are integers (L  2 0, - L  d M 9 L )  
representing the modes of the oscillation. Modes of the same L but different M are 
degenerate. 
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4. Boundary conditions 

surface profile is described by a dimensionless shape function, 
When the drop is undergoing shape oscillations with amplitude ReLM, ELM $ 1, its 

P ( o , # )  = r-(1+ELMYLM(SZ)e-a2t) = 0. (6 )  

The boundary conditions evaluated a t  F = 0 include the kinematic conditions, 
dF/dt = 0, the continuity of the velocities, and the total stress balance. By using the 
velocity and pressure field derived above, the kinematic condition - the interface 
remains in contact with the neighbouring fluids during the course of the oscillations 
- gives that - 

qi 
a2(L + 1 )  

= 0. 

By the continuity of velocities we get 

( L + 2 )  q o  = 0, ( 9 )  - a,[ (L  - 1 )  ht)(ax,) - ax,, hgi, (ax,)] - 
La2 

Finally, the condition of the total stress balance should be satisfied. The total stress 
acting on the spherical interface consists of four parts: pressure stress q, bulk 
viscous stress qv, surface viscous stress cv, and tension stress qen. The pressure 
stress is 

= erR2w*2<pp)io, ( 1 1 4  

where ( p ~ ) ~ ,  = pip i -popo.  The bulk viscous stress is associated with the bulk shear 
viscosities of the fluids and is 

Similarly, the surface viscous stress is associated with the surface shear viscosity ( T ~ )  
and surface dilatational viscosity (E , )  introduced by surfactants, and takes the form 
(Scriven 1960; Bupara 1964) 

1 2 6 s  -ev = -e , - [Vs-vs+2v,]  
w* R 

The tension stress has two terms : one due to  the effect of curvature, and the other 
to the non-uniformity of the interfacial tension. It is 

RF,*,, = ro[-2(1+y)Her+VsYl ,  ( 1 1 4  

where y is the dimensionless fluctuating interfacial tension and H is the dimensionless 
mean curvature of the interface. 
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The variation of the interfacial tension along the interface as the drop oscillates can 
be determined by assuming local equilibrium, with the interfacial tension and surface 
adsorption correlated by their equilibrium relationships (Levich 1962). We have 
assumed that the surfactants are only soluble in the outer fluid and that their 
distribution is governed by convection and diffusion. Under these conditions, the 
continuity equations for the fluctuating bulk surfactant concentration C and surface 
surfactant concentration I‘, non-dimensionalized by their dimensional equilibrium 
counterparts, are ac 

y2-+V.(Cu) at = v2c, (12) 

2 2 - + x 2  v . ~ + -  =v,zr+- - 
at [ 23 ::[El. 

Here C, and are the equilibrium bulk and surface concentration of surfactants 
respectively, D and Ds are the bulk and surface diffusion constants of surfactants 
respectively, n the outward normal to the interface, y2 = R2w*/D the bulk Pdclet 
number, and z2 = R2w*/D the surface PBclet number. To derive (13) we have used the 
Reynolds transport theorem on a curved surface (Lu 1988), and the term D(aC/an), 
is the surfactant flux from the outer fluid to the interface. In general, D and D, 
are of the order of lop5 cm2/s. Thus, y2 and z2 are of order lo5 for oil drops of 
millimeter size and moderate interfacial tension (around 30 dyn/cm), which is much 
larger than the Reynolds number, z2, of the order lo2. 

If the change of the bulk concentration is small and the interface is in equilibrium 
with the bulk fluids, the fluctuating interfacial tension can be expanded in terms of 
the fluctuating surface concentration, and the fluctuating surface concentration can 
be expanded in terms of the fluctuating bulk concentration. Hence, 

and 

Here 

and 

Both E ,  usually termed Gibbs elasticity, and A are determined by the properties, and 
concentrations of surfactants, properties of the bulk fluids, and the local physical 
conditions. Note that variables with the subscript s should be evaluated at the 
interface, and variables with the subscript 0 denote quantities a t  equilibrium. 

Again by using normal mode expansions, the solution of the linearized equation 
(12) can be found readily: 

By using the known velocity field and (15), CLM is determined by satisfying (13) : 
c = c L M  hF’(ayr) Y L M ( Q )  e-aat. 
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From (14) and (15), and the known surfactant distribution, the interfacial tension 
is then found as 

where 
L(L + 1)  LRC, RCoHL(ay )  

a2z2 u2y2A ayA 
G =  1 -  +-- 3 

H,(ay) = h~i,(ay)/hi!' (ay). 
The factor V - v + ( 2 w , / r ) ,  in (16) in fact represents the rate of local expansion of the 
interface. The interfacial tension thus changes with the local expansion and 
compression of the interface as the drop oscillates. The other two parameters that 
determine the change of the interfacial tension are the Gibbs elasticity and G, which 
is controlled by the diffusion rates both in the bulk fluids and on the interface and 
the amount of adsorption. I n  general, the adsorption number RC,/A in G is much 
larger than one, so that the surface diffusion process is less important than the bulk 
diffusion process. Furthermore, higher diffusion rates lead to faster redistribution of 
surfactants and thus to a more uniform interfacial tension on the interface. 

Stress balance demands that 

q+G"+q"+CL = 0, 
which gives 

[T+ L(L2 - 1 )  rPG ( L  + 2 )  a2 I1 L(L y e L M + q i { l -  + 1 )  012 

- 2L(L-l)  l-pd 

[ ( L -  1 )  hff'(ax,) 

- a ~ , h f ~ ~ ( 0 1 x , ) ]  = 0, ( 1 7 )  

- L (I, - 1 ) pd - (L  - 1 ) ( L  + 2 )  ps YPGx; 
(L+ 1) (L  + 2 )  a2 

+ a, Q[[2(L2 - 2 )  - CX%:] ~~'(CZE,) + 2012, hy;,(01~,)] = 0, (18) 

bi"(L-1) + (L  + 2 )  (L-1) P,Ij,(ax,)-axij,+,(ol2i)I-%bo[(L- 1) hi!'(a~o) 

-axOhf~'!l(OIXO)] = 0. (19) 

Here 6 = po/pi is the density ratio, Y = Lb+L+ 1 the reduced density ratio, Q = 
vo/vi the bulk shear viscosity ratio, p, = vs/vi R the surface shear viscosity number, 
pd = E,/qiR the surface dilatational viscosity number, and p = E / y ,  the surface 
dilatational elasticity number. 
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(L-1)[1+(L+2)Pslj,("xi)-"xij,+,("xi) I $;;) $[(L-  1 )  h t f ' ( ~ ~ , ) - ~ ~ , h ~ ~ ~ ( ~ ~ , ) ]  (20) = 0. 

b,, = cll = d,, = -J,(ax,), b,, = c12 = d,, = 2L+ 1, 

bll b12 b13 

b21 b22 b2'3 + A  
b31 b32 b33 

b22 

+H,(ax,) = 0,  1 - (2L + 1)  '11 ' 1 2  '13  ' 1 1  ' 1 2  ' 1 3  

' 2 1  '22 '23 + B  ' 2 1  '22 '23 + 4ABJL,(axi) 

'31 '32 '33 d31d32d33 ' 

= a,, = r ( 1 + ~ 4 ) -  2$L(L + 1 )  (L  + 2)  - 
"2X,2 

2L(L2- 1)  
a'x; ' 

-Lb 2L(L+1)$ 
a2xx," 

b,, = d,, = - + 
" X O  

2[1 -L2+$L(L+2)] 
a2xf b32 = 31 - , 

b 1 2J,("X,) 
axi a2x: ' 

- (L  - 1)  2(L - 1 )  (L + 2 )  J,(ax,) 
" 2 X ;  

+ -2$(2L+ 1)  $2,+2$HL("2,) 
, c21 = -_ , a3x;x0 ax: a2x: " X i  

b33 = 

2(L + 2 )  (L2- 1) 2$L(L - 1 )  (L + 2 )  
c , ~  = Y( 1 + a-4) - - 

a2x? a2x? 9 

- b ( L +  2 )  2$(L- 1)  ( I ,  + 2 )  (2L+ 1 )  - 2$1,- 1 )  (L+2)H,(axo) 
a3x; x, "2.: 

c,, = + 7 

ax, 

~ 3 1  = d,, = JL(axi) c , ~  = 1 -L, c , ~  = d,, = 0, d,, = - (L  + I ) ,  

JL(axi) jL+1(axi)/j,(axi)j 

5. Transcendental equation 
Matching the boundary conditions results in seven homogeneous equations, 

(7)-(lo), and (17)-(19), in seven unknown coefficients, eLM,  a,, q,, a,, q,, b,, and b,. 
Hence non-trivial solutions for the seven unknowns exist only when the determinant 
of the coefficients is zero. This constraint leads to a transcendental equation for the 
dimensionless complex frequency d. Since b, and b, and the other five unknowns 
appear in two sets of equations independently, there are two transcendental 
equations corresponding to two different types of motions. The transcendental 
equation derived from (10) and (19) is 

This equation does not involve any interfacial properties except the surface shear 
viscosity. Furthermore, it can be found that the associated motion always decays 
without oscillations and is purely rotational with no radial motion of the fluid on the 
interface or in the bulks (Lu 1988). Therefore, this type of motion will not be 
considered here. 

The transcendental equation obtained by setting the determinant of the other five 
coefficients to zero is 
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and HL( ax,) = hf~,(ax,)/ity(ax,). 
Equation (21) is so complicated that a general analytic solution is impossible to 
obtain. Nevertheless, by employing proper expansions, approximate solutions can be 
derived for several limiting cases. 

6. Limiting cases 

and G can be expanded as (Lu 1988) 
For a system with small viscosities and large Reynolds number, a, JL(axi),  HL(axo) ,  

a-n x i;" [ 1 - +ndl) + @(+n + I ) e(') - +nd2) + . . .I, (22) 

+..., (L + 1) (L + 1) €(I) JL(axi) x i+-- 
is xi 2is xi 

( L + l )  ( L + l ) d l '  
H,(ax,) x -i+-- +..., 

is XO 2is x, 

and 

Here d") is of the order l/xn, is = (1  + i ) / d2 ,  and h is the surface diffusion-adsorption 
number, 

G x 1 + i s A ( l  +&(I)) -ihL/y+. . . . 

A = (C0 /A)  (D/w*)t. 

(25) 

The approximate solutions for E can be found by making appropriate perturbation 
expansions of the transcendental equation and by equating terms of the same order. 
Since the transcendental equation depends on many non-dimensional parameters - 
such as the density ratio, viscosity ratio, surface dilatational elasticity number, and 
surface dilatational viscosity number, the approximate solutions are meaningful 
only when their orders of magnitude are specified. For simplicity we assume that the 
ratios of the densities and viscosities, 6 and $, are of order 1. Results for other surface 
parameters of different orders are then discussed separately. 

Examination of (21) shows that the surface shear viscosity number Fs and the 
surface dilatational viscosity number Pd always appear with a factor of order i /xf.  
The surface dilatational elasticity number, however, appears with a factor of order 
1. Hence, the ratios, Pd/P and PS/P, must be of order x2 to offset the differences. 
Furthermore, A is assumed to be of order 1,  so the effects due to the diffusion and 
adsorption of surfactants can be easily examined. For the cases studied below, except 
Case 1,  these conditions are retained. 

Case 1 : P = Pd = Ps = h = 0; i.e. Gibbs elasticity, surface dilatational viscosity, 
surface shear viscosity, and surface diffusion-adsorption numbers are zero. 

Here the system contains no surfactants or contaminants. For fluids of small 
viscosities, we find that, to order l/x*, the complex angular velocity is 

o x  iw*(1+s(')+d2)+ ...), (26) 

The first-order term, due to the energy dissipated in the boundary layers through 
rotational motion (Landau & Lifshitz 1959), is identical to Miller & Scriven's, which 
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FIQURE 1 .  Frequency and damping constant versus diameter for hexane drops in pure water at 
24k2 "C. The solid curves are the theoretical predictions based on (27). Symbols are experimental 
results from Lu & Apfel (1990). 

exists only when neither of the densities of the fluids is negligible. The second-order 
term is the same as Marston's (1980) confirming that Miller & Scriven had a missing 
'term ~ ( l ) ' .  

As depicted in figure 1, experimental results obtained by using an acoustic method 
(Lu & Apfel1990) are in good agreement with the theoretical predictions shown here, 
thus supporting the validity of the hydrodynamic analysis. 

Case 2 : Surface dilatational elasticity number is of order 1/x2, surface dilatational 
and shear viscosity numbers order 1, and surface diffusion-adsorption number, at  
most, of order 1. 

This case corresponds to a system exhibiting small surface dilatational, shear 
viscosities, and Gibbs elasticity, which give an additional second-order term, d2)', 
besides the terms in Case 1. The new term of the complex frequency is thus 

'I' i YEW* 
(L-1)(L+2)y,(l+ish) 

+ 

2 ~ ~ 3  

If the diffusion-adsorption number is much smaller than 1, so that effects of the 
surfactant diffusion are negligible, the Gibbs elasticity and the surface viscosities 
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affect the characteristic frequency and the energy dissipation ratc of the system, 
respectively. The damping constant increases with the surface viscosities, as 
expected. The increase of the characteristic frequency with the Gibbs elasticity is due 
to the higher effective interfacial tension (averaged over the interface) assumed by 
the drop as it oscillates (cf. (16)). Hsu's simplified model (Hsu & Apfel 1987) for 
calculating the additional effects introduced by the surface dilatational viscosity is 
adequate only in this case. 

If the diffusion-adsorption number is small but not negligible, both the 
characteristic frequency and the energy dissipation rate are affected by the Gibbs 
elasticity as well as the surface viscosities. The effects can be seen by using the 
approximation, l / ( l + i s A )  M l - i s A ,  such that (28) is transformed into 

L(L+ I )  tS 
+ 123 

" " L  2 ] . (29) 
+ 2 ~ ~ 3  [ l+(brj)i 

( L -  1) (L  + 2) qs ( L f  1) -L(p/) '  

Since the diffusion of the surfactants smooths out the interfacial tension gradient, the 
oscillation frequency is slightly reduced. The damping constant, however, is slightly 
increased owing to the phase difference between the redistribution of surfactants and 
the oscillation of the drop. 

Comparing the rate of energy dissipation due to surface dilatational viscosity with 
that due to surface shear viscosity gives 

- (L-  1) (L+2)  [(L + 1)  - L(brj)i]2 
- shear decay constant 

dilatational decay constant L(L + 1) [ ( L  - 1) - (L  + 2 )  (@rj)i]]" ' 

This ratio increases towards 1 as I, increases if the product of the density ratio and 
viscosity ratio is of order 1 ,  suggesting that the shear and dilatational motions of a 
flat interface are equally important; the shear motion is less important than the 
dilatational motion on a curved interface. For quadrupole oscillations (L = 2 )  of a 
hexane drop (at 25 OC, density = 0.6548 g/cm3, viscosity = 0.294 cP) in water the 
energy dissipation caused by the shear motion on the interface is about 2%. 

Case 3 : Surface dilatational elasticity number and surface dilatational viscosity 
number are much larger than other non-dimensional parameters. 

In  this case the Gibbs elasticity and the surfacc dilatational viscosity are so large 
that motion in the boundary layers is changed drastically. Therefore, the first-order 
solution is no longer the same as the previous ones. It becomes 

which is the same as Miller & Scriven's (1968) result. €(I), however, does not depend 
on the surface parameters p and pa, since the interface is inextensible; the local 
expansion of the interface is impossible to the first order. Yet the surface parameters 
will come into play only when there is a local variation of the interfacial area. 

Comparing (30) with (27a) shows that 

inextensible interface decay constant [ 1 + (b i ) ; ]  [ (L-  1)' + (L  + S)'(b$);]  
N 

free interface decay constant (2L + l)"$j)~ 
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FIGURE 2. Free quadrupole oscillation frequency and damping constant versus surface dilatational 
viscosity number. The calculations are for a hexane drop of a radius 0.1 em in an aqueous solution 
with an equilibrium interfacial tension of 40 dyn/cm, against hexane. The Gibbs elasticity and 
surface shear viscosity are zero. 

which is always greater than one. For the quadrupole oscillations of a hexane drop 
in water, the ratio is about two. 

Case 4 : Surface shear viscosity number is much larger than other non-dimensional 
parameters. 

The interface cannot sustain any shear motion to  the first order. The correction to  
the complex frequency is 

($1) = -i,[(L + 112 + ~ ~ ( b i j ) i ]  
2 rxi  

Comparing the result with (27a)  yields 

no shear interface decay constant [1+ [ ( L  + 1)2 +Lz(&’)i] x 
free interface decay constant (2L+ 1)2(j%j)i 

The ratio is still greater than 1 but not significantly different from it. For the 
quadrupole oscillations of a hexane drop in water, the ratio is about 1. This again 
shows that there is not much shear motion on the spherical hexane-water interface 
even though the interface is free. 

Case 5 : Rurfacc dilatational elasticity number is of order l/x, surface dilatational 
and shear viscosity numbers are of order x, and thc surface diffusion-adsorption 
number is 1. 
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FIGURE 3. Free quadrupole oscillation frequency and damping constant versus surface dilatational 
elasticity number for different surface diffusion-adsorption numbers. The calculations are for a 
hexane drop of a radius 0.1 cm in an aqueous solution with an equilibrium interfacial tension, 
40 dyn/cm, against hexane. The surface dilatational and shear viscosities are zero. 

Here the Gibbs elasticity and the dilatational viscosity are moderate. The first- 
order correction to the complex frequency is 

where (L  + 2)2(i?j)f+ (L - 1 ) Z  L2(@?j)i+ (L + 1 ) 2  

2 YXi 
Ed = , E ,  = 2 YXi 

, 

YP z(L+l)pd, A, = - i(L- 1) (L+ 2) /3, A -  
- ( L - I ) ( L + ~ ) ( I + ~ , A ) -  xi" xi" 

Again the first-order term is due to the energy dissipation in the boundary layers. 
The boundary layer, however, is always present for an interface with elasticities and 
viscosities, even when the density of one of the fluids is negligible. The second-order 
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where 

4 Y  i2 Y 

Xi 
f(Xi, 6, Q )  = - (1  + (66);) €(1)2- .i" [ (L  + 1) (bQ)$+ 2( 1 - Q )  +L(Q/b)f] €(I) 
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Xi" 

FIGURE 4. Free quadrupole oscillation frequency and damping constant versus surface dilatational 
elasticity number for different surface dilatational viscosity numbers. The calculations are for a 
hexane drop of a radius 0.1 cm in an aqueous solution with an equilibrium interfacial tension, 
40 dyn/cm, against hexane. The surface shear viscosity and surface diffusion-adsorption number 
are zero. 
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FIGURE 5. Free quadrupole oscillation frequency and damping constant versus surface dilatational 
elasticity number for different surface dilatational viscosity numbers. The calculations are for a 
hexane drop of a radius 0.1 cm in an aqueous solution with an equilibrium interfacial tension. 
40 dyn/cm, against hexane. The surface shear viscosity is zero, and the surface diffusion-adsorption 
number is one. 

I +l-[4L(I, X; + 1) (1  -$) + (L+ 1) L ~ ( ; $ ) ~ + L ( I ,  + 1 ) 2  ($/#I 

- 4d1)A (L -  1) ( L + 2 )  YP (1 +is  A )  +A,]. 

Effects of the surface parameters are intertwined such that simple observations 
become formidable. To see the importance of each surface parameter, we plot the free 
oscillation frequency and damping constant against each surface parameter (see 
figures 2 4 ) .  The sample system chosen is a hexane drop in a dilute aqueous solution. 
The drop has a radius of 0.1 cm, and the equilibrium interfacial tension is 40 dyn/cm. 

Figure 2 depicts the change of the frequency and damping constant with the 
surface dilatational viscosity number when the Gibbs elasticity and surface shear 
viscosity are zero. For such a system, the frequency decreases and the damping 
constant increases monotonically with the surface dilatational viscosity number. 
These changes of the characteristics of the system are similar to those due to the bulk 
viscosity. 
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FIGURE 6. Free quadrupole oscillation frequency and damping constant versus surface dilatational 
elasticity number for different surface shear viscosity numbers. The calculations are for a hexane 
drop of a radius 0.1 cm in an aqueous solution with an equilibrium interfacial tension, 40 dyn/cm, 
against hexane. Both the surface dilatational viscosity and diffusion-adsorption number are zero. 

Surface dilatational elasticity number 

In  figure 3 we show the variation of the frequency and damping constant with the 
surface dilatational elasticity number assuming that the surface viscosities are zero. 
Both the frequency and damping constant have maxima. Similar effects have also 
been found for a planar air-liquid surface by Mann & Hansen (1963) and Tempe1 & 
Riet (1965). The frequency can be higher or lower than the case with zero Gibbs 
elasticity, depending on the magnitude of the Gibbs elasticity. The damping 
constant, however, is always higher than that for zero Gibbs elasticity. This is 
probably due to  the increased vorticity generated in the boundary layers caused by 
the additional shear stress, the interfacial tension gradient. The maxima, on the 
other hand, may result from the phase difference between the tangential component 
of the bulk viscous stress on the interface and the interfacial tension gradient (cf. 
( 1 1 ) ) .  Furthermore, increasing the surface diffusion-adsorption number, which leads 
to more rapid redistribution of surfactants and thus smaller interfacial tension 
gradient, has a similar effect to decreasing the effective Gibbs elasticity of the 
system. 

When both the Gibbs elasticity and the surface dilatational viscosity are present 
a t  the interface, but the surface shear viscosity is still zero, the dependence of the 
frequency and the damping constant on the surface parameters is shown in figures 
4 and 5. The general trend of the variation of the frequency and damping constant 
with the surface elasticity number is the same for all surface viscosity numbers. The 
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FIGURE 7. Damping constant versus diameter for hexane drops in 0.396 miv (5.2% CMC) SDS 
aqueous solution at  25 "C. The open symbols connected by line represent calculated results and the 
filled symbols the measured ones. The squares and circles denote data taken within five minutes 
and one hour after the drop is introduced into the solution, respectively. 

trend of the variation of the frequency and damping constant with the surface 
viscosity is, however, completely reversed after the crossing region. This behaviour 
is because the stresses caused by the Gibbs elasticity and the surface dilatational 
viscosity are out of phase (cf. (11)) .  

If the interface does not exhibit any dilatational property, both the damping 
constant and frequency change very slowly with the surface shear viscosity since 
little shear motion exists on the spherical interface. Nonetheless, when both the 
dilatational and shear properties are present a t  the interface, the effects of the 
surface shear viscosity are no longer negligible owing to coupling, unique in a non- 
planar interface, between Gibbs elasticity and surface shear viscosity. As shown in 
figure 6, the surface shear viscosity increases the damping constant and frequency 
significantly. It is not clear, however, whether the unusually large effects are spurious 
owing to  the approximate nature of (32). If the effects are real, the measured 
damping constant and frequency can be used to detect the presence of surface shear 
viscosity . 

7. Experimental results 
The interfacial tension, Gibbs elasticity, and surface viscosities can be controlled 

experimentally by choosing appropriate materials and the concentration of 
surfactants. Nevertheless, it is difficult to change these interfacial parameters 
independently. For example, if the surfactant concentration is increased, all 
interfacial parameters are changed simultaneously. The conditions €or the different 
limiting cases discussed above, therefore, cannot be easily achieved experimentally. 
Recently, Lu & Apfel(l990) have measured the free quadrupole oscillation frequency 
and damping constant for hexane drops in SDS aqueous solutions of different 
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concentrations. To reduce the complexities of the problem and make comparisons 
between the theoretical and experimental results possible, they assume that the 
effects of surface viscosities are negligible, and the surfactants adsorbed on the 
interface behave according to the perfect gas law, which are generally true for a 
dilute surfactant solution (Adamson 1982 ; Reichl 1980 ; Ting, Wasan & Migano 
1985). By using (32) (since the dilatational elasticity number ranges between zero 
and one) and the measured frequency, the equilibrium interfacial tension is inferred 
and the damping constant is then calculated. The calculated and measured damping 
constants are shown in figures 7 and 8. Despite the apparent agreement between the 
theoretical and experimental results, further experimental work is required to fully 
test the theoretical predictions. 

8. Conclusions 
We have studied the effects of surface properties, such as Gibbs elasticity and 

surface dilatational and shear viscosities, introduced by surfactants on shape 
oscillations of a fluid drop in another fluid with and without surfactants. A general 
transcendental equation for the complex frequency has been obtained. Explicit 
results for cases of zero, small, intermediate, and large surface properties are 
reported. We have shown that the rate of energy dissipation is always higher for an 
interface exhibiting surface elasticity and viscosities because of stronger vorticity 
generated in the boundary layers. The effects of the interfacial properties become 
measurable if the surface viscosity number is of order 1 or the surface elasticity 
number is of the same order as the Reynolds number. When the surface dilatational 
viscosity or elasticity is so large that the interface is inextensible, or the surface shear 
viscosity is so large that the interface cannot sustain any shear deformation, the 
dispersion relations are extremely simple. The result of for no-shear interface, 

FIGURE 8. Damping constant versus diameter for hexane drops in 0.839 mM (11 ?LO CMC) SDS 
aqueous solution at 25 "C. The open symbols connected by line represent calculated results and the 
filled symbols the measured ones. The squares and circles denote data taken within five minutes 
and one hour after the drop is introduced into the solution, respectively. 
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however, is not so different from that for a free interface, since the shear motion on 
a spherical interface is not important. For the case of moderate interfacial properties, 
we have shown that the Gibbs elasticity is the most important surface property and 
changes the damping constant significantly owing to  stronger vorticity generated in 
the boundary layers caused by the interfacial tension gradient. Furthermore, a t  a 
certain surface elasticity number both the frequency and damping constant show 
maxima. 

This work was supported by the Office of Naval Research. 
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